

 $D \times C$

A Novel Learnable Dictionary Encoding Layer for End-to-End Language Identification

Introduction

In recent decades, in order to get the utterance level vector representation, dictionary learning procedure is widely used.

A dictionary, which contains several temporal orderless center components (or units, words, clusters), can encode the variable-length input sequence into a single utterance level vector representation.

Dictionary Learning

VQ codebook (K-means) UBM (GMM) Phoneme decoder (DNN) Phonotactic tokenizer (GMM / DNN)

LDE Intuition

Weicheng Cai¹, Zexin Cai¹, Xiang Zhang³, Xiaoqi Wang⁴ and Ming Li^{1,2} 1. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China 2. Data Science Research Center, Duke Kunshan University, Kunshan, China 3. Tencent inc., Bejing, China 4. Jiangsu Jinling Science and Technology Group Limited, Nanjing, China ml442@duke.edu

Vector Encoding

Average Quantization Distortion GMM likelihood, GMM Supervector, GMM i-vector **DNN i-vector** Bag-of-words, N-gram token statistics

LDE Implementation

The non-negative assigning weight is given by a softmax function,

Given the assignments and the residual vector, similar to conventional GMM Supervector, the residual encoding model applies an aggregation operation for every dictionary component center μ_c

In order to facilitate the derivation we simplified it as

The LDE layer concatenates the aggregated residual vectors with assigned weights. The resulted encoder outputs a fixed dimensional representation

Experimental Results and Discussion

- front-end CNN is about 1.35 million.

layer	output size	downsample	channels	blocks
conv1	$64 \times L_{in}$	False	16	-
res1	$64 \times L_{in}$	False	16	3
res2	$32 imes rac{L_{in}}{2}$	True	32	4
res3	$16 \times \frac{L_{in}}{4}$	True	64	6
res4	$8 imes rac{L_{in}}{8}$	True	128	3
avgpool	$1 \times \frac{L_{in}}{8}$	-	128	-
reshape	$128 \times L_{out}, L_{out} = \frac{L_{in}}{8}$	-	-	-
				<u>.</u>

System System Description		Feature I	Encoding Method -	$C_{avg}(\%)$		EER(%))	The CNN-LDE system outperforms the CNN-TAP	
ID System Description	3s			10s	30s	3s	10s	30s	system with all different number of dictionary	
1	GMM i-vector	SDC	GMM Supervector	20.46	8.29	3.02	17.71	7.00	2.27	components.
2	CNN-TAP	CNN FeatureMaps	TAP	9.98	3.24	1.73	11.28	5.76	3.96	increased from 16 to 64, the performance improved
3	CNN-LDE(C=16)	CNN FeatureMaps	LDE	9.61	3.71	1.74	8.89	2.73	1.13	insistently. However, once dictionary component
4	CNN-LDE(C=32)	CNN FeatureMaps	LDE	8.70	2.94	1.41	8.12	2.45	0.98	numbers are larger than 64, the performance
5	CNN-LDE(C=64)	CNN FeatureMaps	LDE	8.25	2.61	1.13	7.75	2.31	0.96	Comparing with CNN-TAP, the best CNN-LDE-64
6	CNN-LDE(C=128)	CNN FeatureMaps	LDE	8.56	2.99	1.63	8.20	2.49	1.12	system achieves significant performance
7	CNN-LDE(C=256)	CNN FeatureMaps	LDE	8.77	3.01	1.97	8.59	2.87	1.38	improvement especially with regard to EER.
8	Fusion ID2 + ID5	-	-	6.98	2.33	0.91	6.09	2.26	0.87	Besides, their score level fusion result further improves the system performance significantly.

The LDE layer is a directed acyclic graph and all the components are differentiable w.r.t the input $X = \{x_1, x_2, ..., x_L\}$ and the learnable parameters. Given a set of L frames feature sequence and a learned dictionary center $\mu = {\mu_1, \mu_2, ..., \mu_c}$, each frame of feature x_t can be assigned with a weight to each component μ_c and the corresponding residual vector is denoted by where t = 1, 2, ..., L and c = 1, 2, ..., C. $\mathbf{r}_{tc} = \mathbf{x}_t - \mathbf{u}_c$

$$\mathbf{w_{tc}} = \frac{\exp(-\mathbf{s_c} ||\mathbf{r_{tc}}||^2)}{\sum_{m=1}^{C} \exp(-\mathbf{s_m} ||\mathbf{r_{tm}}||^2)}$$

$$\mathbf{e}_{c} = \sum_{t=1}^{L} \mathbf{e}_{tc} = \frac{\sum_{t=1}^{L} \mathbf{w}_{tc} \times \mathbf{r}_{tc}}{\sum_{t=1}^{L} \mathbf{r}_{tc}}$$

$$\mathbf{e}_{c} = \sum_{t=1}^{L} \mathbf{e}_{tc} = \frac{\sum_{t=1}^{L} \mathbf{w}_{tc} \times \mathbf{r}_{tc}}{L}$$

$$\mathbf{E} = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_C\}$$

• The task of interest is the closed-set language detection. There are totally 14 target languages in testing corpus, which included 7530 utterances split among three nominal durations: 30, 10 and 3 seconds.

• In order to get higher abstract representation better for utterances with long duration, we design a deep CNN based on the well-known ResNet-34 layer architecture, as is described in Table 2. The total parameters of the

• For CNN-TAP system, a simple average pooling layer followed with FC layer is built on top of the font-end CNN. For CNN-LDE system, the average pooling layer is replaced with a LDE layer.

• Because we have no separated validation set, even, we only use the converged model after the last step optimization. For each training step, an integer L within [200,1000] interval is randomly generated, and each data in the mini-batch is cropped or extended to L frames.

• In testing stage, all the 3s, 10s, and 30s duration data is tested on the same model. Because the duration length is arbitrary, we feed the testing speech utterance to the trained neural network one by one.