
A Novel Learnable Dictionary Encoding Layer for End-to-End Language Identification
𝑊𝑒𝑖𝑐ℎ𝑒𝑛𝑔	𝐶𝑎𝑖+, 𝑍𝑒𝑥𝑖𝑛	𝐶𝑎𝑖+, 𝑋𝑖𝑎𝑛𝑔	𝑍ℎ𝑎𝑛𝑔0, 𝑋𝑖𝑎𝑜𝑞𝑖	𝑊𝑎𝑛𝑔3	and	𝑀𝑖𝑛𝑔	𝐿𝑖+,9

1. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
2. Data Science Research Center, Duke Kunshan University, Kunshan, China

3. Tencent inc., Bejing, China
4. Jiangsu Jinling Science and Technology Group Limited, Nanjing, China

ml442@duke.edu

LDE Implementation

Experimental Results and Discussion

Introduction

LDE Intuition

Variable-length Input Dictionary Components

Residuals

Aggregate

Assign Weights

Encoded Vector

µ = {µ1, · · ·µc}
{x1, x2, · · · , xL}

rtc = xt � uc wtc

E = {e1, · · · eC}

TAP Layer

…

D ⇥ L

D

End-to-End Loss

backward

(c) LDE layer

…

LDE Layer
(#Compoents = C)

…

D ⇥ C

D ⇥ L

End-to-End Loss

backward

Table 1. Performance on the 2007 NIST LRE closed-set task
System System Description Feature Encoding Method Cavg(%) EER(%)

ID 3s 10s 30s 3s 10s 30s
1 GMM i-vector SDC GMM Supervector 20.46 8.29 3.02 17.71 7.00 2.27
2 CNN-TAP CNN FeatureMaps TAP 9.98 3.24 1.73 11.28 5.76 3.96
3 CNN-LDE(C=16) CNN FeatureMaps LDE 9.61 3.71 1.74 8.89 2.73 1.13
4 CNN-LDE(C=32) CNN FeatureMaps LDE 8.70 2.94 1.41 8.12 2.45 0.98
5 CNN-LDE(C=64) CNN FeatureMaps LDE 8.25 2.61 1.13 7.75 2.31 0.96
6 CNN-LDE(C=128) CNN FeatureMaps LDE 8.56 2.99 1.63 8.20 2.49 1.12
7 CNN-LDE(C=256) CNN FeatureMaps LDE 8.77 3.01 1.97 8.59 2.87 1.38
8 Fusion ID2 + ID5 - - 6.98 2.33 0.91 6.09 2.26 0.87

Table 2. Our front-end CNN configuration
layer output size downsample channels blocks
conv1 64 ⇥ Lin False 16 -
res1 64 ⇥ Lin False 16 3
res2 32 ⇥ Lin

2 True 32 4
res3 16 ⇥ Lin

4 True 64 6
res4 8 ⇥ Lin

8 True 128 3
avgpool 1 ⇥ Lin

8 - 128 -
reshape 128⇥ Lout, Lout =

Lin
8 - - -

i-vector baseline system is used here. For improving the data load-
ing efficiency, all the utterances are split into short segments no more
than 60s long , according to the VAD flags.

The receptive field size of a unit can be increased by stacking
more layers to make the network deeper or by sub-sampling. Modern
deep CNN architectures like Residual Networks [26] use a combina-
tion of these techniques. Therefore, in order to get higher abstract
representation better for utterances with long duration, we design a
deep CNN based on the well-known ResNet-34 layer architecture,
as is described in Table 2.

For CNN-TAP system, a simple average pooling layer followed
with FC layer is built on top of the font-end CNN. For CNN-LDE
system, the average pooling layer is replaced with a LDE layer.

The network is trained using a cross entropy loss. The model is
trained with a mini-batch, whose size varies from 96 to 512 consider-
ing different model parameters. The network is trained for 90 epochs
using stochastic gradient descent with momentum 0.9 and weight de-
cay 1e-4. We start with a learning rate of 0.1 and divide it by 10 and
100 at 60th and 80th epoch. Because we have no separated valida-
tion set, even though there might exist some model checkpoints can
achieve better performance, we only use the model after the last step
optimization. For each training step, an integer L within [200,1000]
interval is randomly generated, and each data in the mini-batch is
cropped or extended to L frames. The training loss tendency of our
end-to-end CNN-LDE neural network is demonstrated in Fig. 4. It
shows that our neural network with LDE layer is traninable and the
loss can converge to a small value.

In testing stage, all the 3s, 10s, and 30s duration data is tested on
the same model. Because the duration length is arbitrary, we feed the
testing speech utterance to the trained neural network one by one.

In order to get the system fusion results of ID8 in Table 1, we
randomly crop several additional training data corresponding to the
separated 30s, 10s, 3s duration tasks. The score level system fusion
weights are all trained on them.

Fig. 4. Loss duraing CNN-LDE training stage, smoothed with each
400 steps

3.4. Evaluation

Table 1 shows the performance on the 2007 NIST LRE closed-set
task. The performance is reported in average detection cost Cavg

and equal error rate (EER). Both CNN-TAP and CNN-LDE system
achieve significant performance improvement comparing with con-
ventional GMM i-vector system.

For our purpose in exploring encoding method for end-to-end
neural network, we focus the comparison on system ID2 and ID3-
ID7. The CNN-LDE system outperforms the CNN-TAP system with
all different number of dictionary components. When the numbers
of dictionary component increased from 16 to 64, the performance
improved insistently. However, once dictionary component numbers
are larger than 64, the performance decreased perhaps because of
overfitting.

Comparing with CNN-TAP, the best CNN-LDE-64 system
achieves significant performance improvement especially with re-
gard to EER. Besides, their score level fusion result further improves
the system performance significantly.

4. CONCLUSIONS

In this paper, we imitate the GMM Supervector encoding procedure
and introduce a LDE layer for end-to-end LID neural network. The
LDE layer acts as a smart pooling layer integrated on top of convolu-
tional layers, accepting arbitrary input lengths and providing output
as a fixed-length representation. Unlike the simple TAP, it rely on a
learnable dictionary and can accumulate more discriminative statis-
tics. The experiment results show the superior and complementary
of LDE comparing with TAP.

Table 1. Performance on the 2007 NIST LRE closed-set task
System System Description Feature Encoding Method Cavg(%) EER(%)

ID 3s 10s 30s 3s 10s 30s
1 GMM i-vector SDC GMM Supervector 20.46 8.29 3.02 17.71 7.00 2.27
2 CNN-TAP CNN FeatureMaps TAP 9.98 3.24 1.73 11.28 5.76 3.96
3 CNN-LDE(C=16) CNN FeatureMaps LDE 9.61 3.71 1.74 8.89 2.73 1.13
4 CNN-LDE(C=32) CNN FeatureMaps LDE 8.70 2.94 1.41 8.12 2.45 0.98
5 CNN-LDE(C=64) CNN FeatureMaps LDE 8.25 2.61 1.13 7.75 2.31 0.96
6 CNN-LDE(C=128) CNN FeatureMaps LDE 8.56 2.99 1.63 8.20 2.49 1.12
7 CNN-LDE(C=256) CNN FeatureMaps LDE 8.77 3.01 1.97 8.59 2.87 1.38
8 Fusion ID2 + ID5 - - 6.98 2.33 0.91 6.09 2.26 0.87

Table 2. Our front-end CNN configuration
layer output size downsample channels blocks
conv1 64 ⇥ Lin False 16 -
res1 64 ⇥ Lin False 16 3
res2 32 ⇥ Lin

2 True 32 4
res3 16 ⇥ Lin

4 True 64 6
res4 8 ⇥ Lin

8 True 128 3
avgpool 1 ⇥ Lin

8 - 128 -
reshape 128⇥ Lout, Lout =

Lin
8 - - -

i-vector baseline system is used here. For improving the data load-
ing efficiency, all the utterances are split into short segments no more
than 60s long , according to the VAD flags.

The receptive field size of a unit can be increased by stacking
more layers to make the network deeper or by sub-sampling. Modern
deep CNN architectures like Residual Networks [26] use a combina-
tion of these techniques. Therefore, in order to get higher abstract
representation better for utterances with long duration, we design a
deep CNN based on the well-known ResNet-34 layer architecture,
as is described in Table 2.

For CNN-TAP system, a simple average pooling layer followed
with FC layer is built on top of the font-end CNN. For CNN-LDE
system, the average pooling layer is replaced with a LDE layer.

The network is trained using a cross entropy loss. The model is
trained with a mini-batch, whose size varies from 96 to 512 consider-
ing different model parameters. The network is trained for 90 epochs
using stochastic gradient descent with momentum 0.9 and weight de-
cay 1e-4. We start with a learning rate of 0.1 and divide it by 10 and
100 at 60th and 80th epoch. Because we have no separated valida-
tion set, even though there might exist some model checkpoints can
achieve better performance, we only use the model after the last step
optimization. For each training step, an integer L within [200,1000]
interval is randomly generated, and each data in the mini-batch is
cropped or extended to L frames. The training loss tendency of our
end-to-end CNN-LDE neural network is demonstrated in Fig. 4. It
shows that our neural network with LDE layer is traninable and the
loss can converge to a small value.

In testing stage, all the 3s, 10s, and 30s duration data is tested on
the same model. Because the duration length is arbitrary, we feed the
testing speech utterance to the trained neural network one by one.

In order to get the system fusion results of ID8 in Table 1, we
randomly crop several additional training data corresponding to the
separated 30s, 10s, 3s duration tasks. The score level system fusion
weights are all trained on them.

Fig. 4. Loss duraing CNN-LDE training stage, smoothed with each
400 steps

3.4. Evaluation

Table 1 shows the performance on the 2007 NIST LRE closed-set
task. The performance is reported in average detection cost Cavg

and equal error rate (EER). Both CNN-TAP and CNN-LDE system
achieve significant performance improvement comparing with con-
ventional GMM i-vector system.

For our purpose in exploring encoding method for end-to-end
neural network, we focus the comparison on system ID2 and ID3-
ID7. The CNN-LDE system outperforms the CNN-TAP system with
all different number of dictionary components. When the numbers
of dictionary component increased from 16 to 64, the performance
improved insistently. However, once dictionary component numbers
are larger than 64, the performance decreased perhaps because of
overfitting.

Comparing with CNN-TAP, the best CNN-LDE-64 system
achieves significant performance improvement especially with re-
gard to EER. Besides, their score level fusion result further improves
the system performance significantly.

4. CONCLUSIONS

In this paper, we imitate the GMM Supervector encoding procedure
and introduce a LDE layer for end-to-end LID neural network. The
LDE layer acts as a smart pooling layer integrated on top of convolu-
tional layers, accepting arbitrary input lengths and providing output
as a fixed-length representation. Unlike the simple TAP, it rely on a
learnable dictionary and can accumulate more discriminative statis-
tics. The experiment results show the superior and complementary
of LDE comparing with TAP.

Dictionary Learning

VQ codebook (K-means)
UBM (GMM)

Phoneme decoder (DNN)
Phonotactic tokenizer (GMM / DNN)

Vector Encoding

Average Quantization Distortion
GMM likelihood, GMM Supervector, GMM i-vector

DNN i-vector
Bag-of-words, N-gram token statistics

Ø Pros: high-order discriminative statistics
Ø Cons: unsupervised and self-contained

Ø Pros: end-to-end
Ø Cons: simple statistics (mean)

Ø Motivated by GMM Supervector encoding procedure, we design a learnable dictionary encoding (LDE)
layer on top of front-end CNN. The LDE layer simultaneously learns the encoding parameters along with
an inherent dictionary in a fully supervised manner.

Ø The inherent dictionary is learned from the distribution of the descriptors by passing the gradient
through assignment weights. During the training process, the updating of extracted convolutional
features can also benefit from the encoding representations.

GMM Supervector

Temporal average pooling

LDE layer

FC Layer

LR/SVM

Loss function Loss function

GMM LDE Layer

Factor Analysis

GMM i-vector End-to-End

backward

backward

Filterbank Coefficients

SDC Sequence FeatureMaps

Supervector

i-vector

Encoded Vector

…

… …

DCT + Shifted Delta CNN

End-to-end neural network with LDE layer
…

Pre-trained GMM
(#Compoents = C)

…

D ⇥ C

D ⇥ L

The LDE layer is a directed acyclic graph and all the components are differentiable w.r.t the input 𝐗 = 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐋 and the learnable
parameters. Given a set of L frames feature sequence and a learned dictionary center 𝛍 = {𝛍𝟏, 𝛍𝟐, … , 𝛍𝐜}, each frame of feature xG can be
assigned with a weight to each component 𝛍𝐜	and the corresponding residual vector is denoted by

𝐫𝐭𝐜 = 𝐱𝐭 − 𝐮𝐜,		 where 𝑡 = 1, 2, … , 𝐿	and c= 1, 2, … , 𝐶.

The non-negative assigning weight is given by a softmax function,

𝐰𝐭𝐜 =
𝐞𝐱𝐩	(−𝐬𝐜 𝐫𝐭𝐜

𝟐)

∑ 𝐞𝐱𝐩	(−𝐬𝐦 𝐫𝐭𝐦
𝟐)𝐂

𝐦X𝟏

Given the assignments and the residual vector, similar to conventional GMM Supervector, the residual encoding model applies an
aggregation operation for every dictionary component center 𝛍𝐜

𝐞𝐜 =Y𝐞𝐭𝐜

𝐋

𝐭X𝟏

= 	
∑ 𝐰𝐭𝐜	×𝐫𝐭𝐜𝐋
𝐭X𝟏
∑ 𝐫𝐭𝐜𝐋
𝐭X𝟏

In order to facilitate the derivation we simplified it as

𝐞𝐜 =Y𝐞𝐭𝐜

𝐋

𝐭X𝟏

= 	
∑ 𝐰𝐭𝐜	×𝐫𝐭𝐜𝐋
𝐭X𝟏

𝐋
The LDE layer concatenates the aggregated residual vectors with assigned weights. The resulted encoder outputs a fixed dimensional
representation

𝐄	 = 𝐞𝟏, 𝐞𝟐, … , 𝐞𝐂

Ø The CNN-LDE system outperforms the CNN-TAP
system with all different number of dictionary
components.

Ø When the numbers of dictionary component
increased from 16 to 64, the performance improved
insistently. However, once dictionary component
numbers are larger than 64, the performance
decreased perhaps because of overfitting.
Comparing with CNN-TAP, the best CNN-LDE-64
system achieves significant performance
improvement especially with regard to EER.

Ø Besides, their score level fusion result further
improves the system performance significantly.

l The task of interest is the closed-set language detection. There are totally 14 target languages in testing corpus,
which included 7530 utterances split among three nominal durations: 30, 10 and 3 seconds.

l In order to get higher abstract representation better for utterances with long duration, we design a deep CNN
based on the well-known ResNet-34 layer architecture, as is described in Table 2. The total parameters of the
front-end CNN is about 1.35 million.

l For CNN-TAP system, a simple average pooling layer followed with FC layer is built on top of the font-end CNN. For
CNN-LDE system, the average pooling layer is replaced with a LDE layer.

l Because we have no separated validation set, even, we only use the converged model after the last step
optimization. For each training step, an integer 𝐿 within [200,1000] interval is randomly generated, and each data in
the mini-batch is cropped or extended to 𝐿 frames.

l In testing stage, all the 3s, 10s, and 30s duration data is tested on the same model. Because the duration length is
arbitrary, we feed the testing speech utterance to the trained neural network one by one.

In recent decades, in order to get the utterance level vector representation,
dictionary learning procedure is widely used.

A dictionary, which contains several temporal orderless center components (or units, words, clusters), can
encode the variable-length input sequence into a single utterance level vector representation.

