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Abstract
The ongoing ASVspoof 2017 challenge aims to detect re-

play attacks for text dependent speaker verification. In this pa-
per, we propose multiple replay spoofing countermeasure sys-
tems, with some of them boosting the CQCC-GMM baseline
system after score level fusion. We investigate different steps in
the system building pipeline, including data augmentation, fea-
ture representation, classification and fusion. First, in order to
augment training data and simulate the unseen replay condition-
s, we converted the raw genuine training data into replay spoof-
ing data with parametric sound reverberator and phase shifter.
Second, we employed the original spectrogram rather than C-
QCC as input to explore the end-to-end feature representation
learning methods. The spectrogram is randomly cropped in-
to fixed size segments, and then fed into a deep residual ne-
towrk (ResNet). Third, upon the CQCC features, we replaced
the subsequent GMM classifier with deep neural networks in-
cluding fully-connected deep neural network (FDNN) and Bi-
directional Long Short Term Memory neural network (BLST-
M). Experiments showed that data augmentation strategy can
significantly improve the system performance. The final fused
system achieves to 16.39 % EER on the test set of ASVspoof
2017 for the common task.
Index Terms: ASVspoof, replay attack, data augmentation,
end-to-end, representation learning, ResNet

1. Introduction
Automatic speaker verification (ASV) refers to automatically
accept or reject a claimed identity by his or her voice, and nowa-
days it is widely used in real-world biometric authentication
applications [1, 2, 3]. However, a growing number of studies
have confirmed the severe vulnerability of state-of-the-art ASV
systems under a diverse range of intentional fraudulent attacks
[4, 5, 6]. The initiative of the series ASVspoof challenge aims
to promote the development of spoofing countermeasure stud-
ies [7]. The task in previous ASVspoof 2015 challenge was to
discriminate genuine human speech from speech produced us-
ing text-to-speech and voice conversion attacks [8]. Arguably,
however, replay attacks might be the most common spoofing
technique to ASV especially for text dependent speaker verifi-
cation, as it does not require the attackers to have any speech
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technology knowledge and can be mounted with greater ease
using common consumer devices [9, 10].

The ongoing ASVspoof 2017 challenge is to assess audio
replay spoof attack detection ’in the wild’ [11]. The task is
to determine whether a given speech audio is genuine human
voice or replayed recording. The challenge is focused on the
development of generalized and robust spoofing attack detectors
with the capability of detecting various of replay attacks with
both known and unknown conditions [12].

Recently, a new constant Q cepstral coefficient(CQCC)
feature based on the constant Q transform(CQT), which is a
perceptually-inspired time-frequency analysis tool popular in
the music study, was proposed to detect various kinds of spoof-
ing attacks [13, 14]. It is shown in [14, 15] that CQCC outper-
forms many previously reported features by a significant margin
against both known and unknown attacks. It is further stud-
ied that there is more gain that could be achieved by designing
effective feature representations rather than investigating more
advanced or complex classifiers with common features. Con-
cretely, the standard Gaussian Mixture Model (GMM) trained
with maximum likelihood criterion has been shown to yield a-
mong the best performances, compared with various kind of
generative and discriminative methods including GMM-UBM
[1], GLDS-SVM [16], GMM-SVM [16], i-vectors [17], etc.,
given the short duration audio inputs.

Based on the state-of-the-art CQCC-GMM method, we
have investigated different steps in the countermeasure system
building pipeline, including data augmentation, feature repre-
sentation, classification and fusion. The motivation behind is
that introducing multiple diverse, competitive, and complemen-
tary methods could potentially boost the baseline performance
significantly after score level fusion.

As the first contribution of this paper, we proved the effec-
tiveness of artificial data augmentation strategy. We generated
a set of ”spoof-liked” audio samples through different paramet-
ric reverberators and phase shifters to simulate the real world
replay attack channel characteristics. It is shown that the GMM
trained with pooled ’real’ spoofing data and ’simulated’ spoof-
ing data can capture more pattern of unknown conditions. The
second contribution is that we introduced an end-to-end repre-
sentation learning framework rather than following the conven-
tional handcrafted feature based methods. We directly fed the
original audio spectrogram into a deep ResNet, thus the feature
descriptor and classifier can be learned in an aggregated end-to-
end manner. To the best of our knowledge, there are only few
existing end-to-end spoof countermeasure systems and the pro-
posed ResNet framework presents a potentially new direction
for automatic feature learning especially with large amount of
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training data which might be available in future. Last but not
least, we came to the same conclusion as [14, 18] that although
GMM back-end can’t achieve the best performance on devel-
opment dataset, it has strong capability in anti-overfitting and
always superior on the test set, which contains a number of data
from various kinds of unknown conditions.

2. Methods
2.1. Data augmentation

In order to simulate the probably unseen replay condition, we
converted the raw genuine training data to simulated replay
spoofing data by some parametric sound reverberator and phase
shifter for data augmentation.

Compared to the genuine human voice, the replayed speech
generally has some special acoustic characteristics related to the
loudspeaker, the room reverberation and the microphone. Since
our training data can not cover all the replay conditions, our
model should have good generability for unseen conditions.

In general, when people directly speak to the microphone,
the strong air flow coming out of the mouth makes the collected
speech contain high percentage of directly arrived sound with
less reverberation [19]. However, the common loudspeaker-
s used in the replaying attacks do not have the acoustic vocal
effect of human talking head. The replayed speech will in-
evitably introduce more reverberation unless the line-out to line-
in recording channel is used. This motivates us to use a para-
metric reverberator to artificially simulate ”spoof-liked” speech
from the genuine speech.

Moreover, since the original speech signal went through
a complex replay pipeline, there might be some distortions
brought by the imperfect playing and recording devices or en-
vironments. Therefore, we also adopt a phaser [20] to simulate
some distorted speech as a part of the simulated spoofing data.

We use the Adobe Audition CC software with the default
parameter setup to simulate the effects of reverberator and phas-
er. For each genuine speech, we generate two simulated spoof-
ing data using the parameters shown in Table 1. By adding these
simulated replay spoofing data in the training set, the system be-
comes less over-fitting.

Table 1: Parameters of studio reverberation effect and phaser
effect in the Adobe Audition software

studio reverberation phaser

Room Size 100 Intensity 100%

Decay 2000ms Depth 72%

High Frequency Cut 897 Hz Mod Rate 2.43 Hz

Low Frequency Cut 385 Hz Upper Freq 54 Hz

Damping 80% Feedback 64 %

Diffusion 20% Output Gain -3.3dB

2.2. Feature representation

2.2.1. Handcrafted CQCC feature

The so-called CQCC feature is obtained by perceptually-aware
CQT coupled with traditional cepstral analysis. The extraction
framework is shown in Fig. 1, more details of CQCC can be
found in [14].

Figure 1: Block diagram of CQCC feature extraction

2.2.2. Representation learning upon ResNet

As shown in Fig. 2, traditional machine learning methods might
have to build classifiers on hand-designed features, which re-
quires extensive domain knowledge from human experts. Rep-
resentation learning, on the opposite, tries to represent the signal
as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations
computed in terms of less abstract ones [21].
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(a) classic machine learning

Mapping from features
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more  abstract features
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Output
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Figure 2: Flowcharts of handcrafted feature modeling and end-
to-end representation learning

ResNet have emerged as a family of very deep architectures
showing competitive accuracy and nice convergence behaviors
in many computer vision tasks such as object recognition, face
identification, emotion recognition [22, 23]. They are neural
networks in which each layer consists of a residual module fi
and a skip connection bypassing fi. Since layers in ResNet can
compromise multiple convolutional layers, they are referred to
as residual block, which is shown in Fig. 3.

Figure 3: An example of typical block
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With x as input, the output of the ith block is recursively
defined as

yi ≡ fi(x) + x (1)

where fi(x) is a sequence of operations convolutions, batch
normalization, and rectified linear units(RELU). In the most re-
cent formulation of ResNetf, fi(x) is defined by

fi(x) ≡ (B(Wi · σ(B(W
′
i · x)))) (2)

where Wi and W
′
i and are weight matrices,· denotes con-

volution, B(x) is batch normalization and σ(x) ≡ max(x, 0).

Table 2: ResNet Configuration

layer name output size 34-layer

conv1 112x112 7x7, 64, stride 2

conv2 x 56x56
3x3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
× 3

conv3 x 28x28

[
3× 3, 128
3× 3, 128

]
× 4

conv4 x 14x14

[
3× 3, 256
3× 3, 256

]
× 6

conv5 x 7x7

[
3× 3, 512
3× 3, 512

]
× 3

1x1 average pool, 2-d fc, softmax

As for ResNet, we randomly cropped multiple fix sized im-
ages (224x224) from the Short-time Fourier transform(STFT)
based spectrogram and then fed them into a standard 34 layer
ResNet as shown in Table 2.

2.3. Classification

After obtaining the feature representation of each utterance, we
need to train a robust classifier to detect the replay recordings.
In this section, we investigate different classification methods
based on CQCC feature.

2.3.1. GMM

GMM is a stochastic generative model, and is widely used to
model the probability distribution of audio features.

In the test phase, given the models, λgenuine and λspoof ,
and the feature vectors of the test utterance Y = [y1, ...yT ], the
detection score is computed as follows [18]:

Λ(Y ) = Γ(Y |λgenuine))− Γ(Y |λgenuine)). (3)

where Γ(Y |λ) = (1/T )
∑T

t=1 log p(yt|λ) is the average log-
likelihood of Y given GMM model λ. λgenuine and λspoofare
the GMMs for genuine and spoofed classes, respectively.

For the baseline system, we followed the matlab implemen-
tation of CQCC extraction together with GMM classifier pro-
vided by [14]. Every audio sample is converted to a 90 dimen-
sional CQCC feature sequence. Then, two 512-component G-
MMs are trained on the genuine and spoofed speech utterances,
respectively. The score for a given test utterance is computed as
log-likelihood ratio between these two GMM models.

2.3.2. FDNN

Although GMM can model the probability distribution of given
features, as a kind of generative model,it may not be optimum
in terms of discrimination [24]. Besides, the feature vectors for

GMM are assumed to be independent and identically distributed
which might not be true in our case. As a result, it can’t exploit
the correlated information embedded in the context. With this
consideration, we keep the CQCC as input feature, replacing
GMM with FDNN, as shown in Fig. 4. Each feature vector
is concatenated with its partial left 4 context window and right
4 context window feature vectors. These feature vectors are
then flattened into a single 810 dimension vector as input of
the FDNN. The output layer has 1 units, and the binary cross-
entropy loss is adopted. Similar to GMM system, the ultimate
score was computed from the mean pooling of the frame level
posterior probabilities.

⋮

+1+1 +1

Figure 4: FDNN arthitecture for input CQCC feature

2.3.3. BLSTM

The third classifier investigated is BLSTM. Given an input
sequence x = [x1, ..., xT ] and the hidden vector h =
[h1, ..., hT ], for a standard recurrent neural networks(RNNs),
the output vector y = [y1, ..., yT ] can be computed from t = 1
to T according to the following iterative equations:

ht = H(Wxhxt +Whhht−1 + bh) (4)

yt = Whtht + by (5)

where H is the activation function of hidden layer, W is the
weight matrix, and b is the bias vectors.

Bidirectional RNNs(BRNNs) were proposed to make ful-
l use of the context of feature sequences in both forward and
backward directions [25]. Furthermore, an LSTM structure
consists of memory blocks was proposed to learn the long ter-
m dependencies [26, 27]. Every block contains self-connected
memory cells and three adaptive and multiplicative gate unit-
s i.e. input, output,and forget gates. These gates can respec-
tively provide write, read, reset operations for the cells. After
combining the advantages of BRNN and LSTM, BLSTM [28],
designed as Fig. 5, can deal with long-range context in both
preceding and succeeding directions.

Figure 5: Typical BLSTM structure
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Since BLSTM is just considered to build up high level rep-
resentation of input features, additional fully-connected layer
is needed to map it into binary categorical output. We chose
a large window contained left 20 frames and right 20 frames
context,compare with FDNN. Therefore, a 41×90 sequential
feature is derived to feed into the BLSTM network.

3. Experiments
3.1. Data protocol

We followed the original data participation protocol provided by
the ASVspoof 2017 challenge organizers. The training dataset
contains 3016 utterances including 1508 genuine utterances and
1508 spoofing utterances from 10 speakers. The developmen-
t dataset contains 1710 utterances including 760 genuine ut-
terances and 950 spoofing utterances from 8 speakers. The
test dataset with unknown genuine/spoof label contains total-
ly 14220 audio samples. Most of our implemented systems are
trained in two versions, one is trained by only train data, the
other by using pooled train and development data.

3.2. Results on data augmentation

The results in Fig. 6 reveal that data augmented CQCC-
GMM(DA-CQCC-GMM) outperforms the CQCC-GMM base-
line by approximate 30% relatively on development set. On
test set, 18% relative performance improvement is gained when
trained without development data, meanwhile 14% relative per-
formance gained in pooling development data condition. After
score level fusion, the system achieves to 17.52% EER, which
is a relatively 23% performance improvement.
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Figure 6: Results on data augmentation

3.3. Results on end-to-end representation learning

Here shows the results on end-to-end representation learning in
Fig. 7. It reveals that end-to-end ResNet method outperform
CQCC-GMM significantly on development set. For test set, in
the contrast, CQCC-GMM slightly superior to ResNet, and after
score level fusion, system performance is boosted.

3.4. Results on classifiers

Experiment results in Table 3 show that although deep learning
methods like FDNN and LSTM can achieve significantly su-
perior performance compared with GMM on development set,
they decline sharply on test set. The BLSTM got 40.08% EER
and the FDNN got nearly almost all the posteriors to zero (there-
by we didn’t submit to the challenge organizer the FDNN sys-
tem results on test set), with both of them reveal severe overfit-
ting.
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Figure 7: Results on end-to-end representation

Table 3: System performance by different classifier

Classifier EER on Devel. Set (%) EER on Test Set (%)

GMM 10.35 28.15
FDNN 6.41 -

BLSTM 5.82 40.08

3.5. System fusion results

Finally, as presented in Table 4, after score level fusion on
the results of CQCC-GMM, DA-CQCC-GMM and ResNet, the
proposed method achieve 16.39% EER performance, which
outperforms baseline by 26% relatively .

Table 4: Final system fusion results

System Devel. Set (%) Test Set (%)

CQCC-GMM(baseline) 10.35 22.29

DA-CQCC-GMM 7.01 19.18

ResNet 6.32 23.14

Score level fusion 3.52 16.39

4. Conclusions and future works
This paper investigates different steps in the ASV spoof coun-
termeasure system building pipeline, including data augmenta-
tion, feature representation, classification and fusion. It shows
the effectiveness of simulating the unknown ’spoof-liked’ da-
ta, therefore drives us to pursuit higher generalization ability
on small limited data through various kinds of data augmen-
tation strategy. Besides, the comparable performance produced
by ResNet reveals a possible good potential of end-to-end repre-
sentation learning, which requires little human experts’ domain
knowledge.

In the future, there remains much to be done: (1) The data
augmentation strategy in this paper is done manually, and quite
rely on human knowledge. It is possible to seek a data driven
generative adversarial models to automatically learn the pattern
of ’spoof-liked’ data; (2) In the experiments, we only use the
STFT based spectrogram as the input of ResNet, it might not be
optimal and we can try to investigate some perceptually-aware
spectrogram like CQT spectrogram, Gammatone spectrogram,
etc.; (3) Although FDNN/BLSTM is inferior to GMM in the ex-
periment, the significant improvement on development dataset
motivates us to investigate its strong representation ability on
larger scale datasets.
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