Analysis of Length Normalization in End-to-End Speaker Verification System
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Introduction Deep Length Normalization

Motivation:
Is it possible to learn the deep speaker embeddings being length-normalized in an
end-to-end manner within common classification network ?
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(b) Open-set verification

Traditional Length Normalization Experimental Results and Discussion

Network Setup . _
\ » The model is trained with a mini-batch size of 128, using typical stochastic Table 1: Baseline end-to-end system architecture
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scoring modeling is widely used to get the final pairwise scores. Score B
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The cosine S|m|Iar|ty IS a 5|m|Iar|ty measure which is mdependent Table 3: Verification performance on VoxCelebl for various Output speaker categories _ _ _ % ool — L-normalized speaker embedding

of magnitude, it can be seen as the length-normalized version of scale parameter o (lower is better)
inner-product of two vectors..
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System Description minDCF10~>  minDCF10~° EER(%) Experiments on different a

Deep embedding baseline 0.553 0.713 5.48 ® We first investigate the setting of scale parameter a. For those systems in Table
fixeda =1 0.922 0.967 10.18 3 and Fig. 4, the cosine similarity or equivalently L2-normalized inner-product is
fixed a = 4 0.601 0.828 6.36 adopted to measure the similarities between speaker embeddings. T U
fixeda =8 0.515 0.687 549 ® From Fig. 4, we can observe the proposed L2-normalized deep embedding (b) Performance in terms of minDCE10~3
fixed a = 12 0.475 0.586 5.01 system achieves the best minDCF of 0.475, 0.586 and EER of 5.01%, which

\ fixedaa = 16 0.499 0.596 5.32 outperforms the baseline system Slg nifica ntIy. Figure 4: Performance tendency curve considering various «

o
o

Best alpha: (12, 0.586) Trained alpha: (26.1, 0.599)
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minDCF10~3 on Voxcelebl data:

Length normalization in classical i-vector approach
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fixed a = 20 0.503 0.637 5.46 ® The performance is poor when « is too small and stable with o is higher. The
fixed o = 24 0.502 0.638 5.54 best ot in our experiment is 12.

fixed a = 28 0.497 0.640 5.52
‘ _I I I I I Training | trained o = 26.1 0486 0.599 5.60 We further compare the effect of deep length normalization

feature sequence . re . . .
Once speaker embeddmgs (such as x-vectors) strategy and traditional extra length normalization in the whole

‘ ‘ are extracted. iust the same as in i-vector Table 2: Voxcelebl open-set verification task performance, in comparing the effect of our introduced deep length normalization strategy SV pipeline. The results are shown in Table 2.
I ) ! J e er e and traditional extra length normalization step (lower is better) L. . .
approach, cosine s|m||ar|ty or Iength ® No matter in i-vector or baseline deep speaker embedding

normalization followed by PLDA is common|y System Description Deep Lo-norm  Traditional L-norm  Similarity Metric  minDCF10~>  minDCF10~>  EER(%) systems, extra length normalization step followed by PLDA scoring

- - ~ : achieves the best performance.
Testing . . . i-vector + inner-product N/A inner-product 0.736 0.800 13.80 ; . . .
feature sequence adopted to get the final Pairwise scores. i-vector + cosine N/A inner-product 0.681 0.771 13.80 ® When it turns into L2-normalized deep speaker embedding

i-vector + PLDA N/A PLDA 0.488 0.639 548 systems, since the speaker embeddings extracted from neural
i-vector + Ly-norm + PLDA N/A PLDA 0.484 0.627 541 network have already been normalized to unit length, we need no
Deep embedding + inner-product inner-product 0.758 0.888 742 more extra length normalization step.
Deep embedding+ cosine inner-product 0.553 0.713 5.48 ® In testing stage, a simple inner-product achieves the best

Deep embedding+ PLDA PLDA 0.524 0.739 5.90 performance, even slightly better than the PLDA scoring result. It
Length normalization in typical speaker embedding approach J Ak

PLDA 0.545 0733 5.21 might be the reason that our L2-normalized speaker embedding is
L2-normalized deep embedding + inner-product inner-product 0.475 0.586 5.01 h|gh|y optimizedl which could incompatible with the Objective
PLDA 0.525 0.694 4.74 function introduced by PLDA.
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Ly-normalized deep embedding + PLDA




