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Open-set Speaker Verification:
(determines whether a pair of utterances belongs to the same person)

Ø Speaker identities in testing set are usually disjoint from 
the ones in training set, which makes the speaker 
verification more challenging yet closer to practice.

Ø Since it is impossible to classify testing utterances to 
known identities in training set, we need to map speakers 
to a discriminative feature space.

Ø In this scenario, open-set speaker verification is essentially 
a metric learning problem, where the key is to learn 
discriminative large-margin features.

Length normalization on i-vector has been the de facto standard 
before back-end modeling. 

For open-set SV task, cosine similarity or length normalization 
followed by probabilistic linear discriminant analysis (PLDA) 
scoring modeling is widely used to get the final pairwise scores. 

The cosine similarity is a similarity measure which is independent 
of magnitude, it can be seen as the length-normalized version of 
inner-product of two vectors..

Once speaker embeddings (such as  x-vectors) 
are extracted, just the same as in i-vector 
approach, cosine similarity or length 
normalization followed by PLDA is commonly 
adopted to get the final pairwise scores. 

Length normalization in classical i-vector approach

Length normalization in typical speaker embedding approach

Motivation:
Is it possible to learn the deep speaker embeddings being length-normalized in an 

end-to-end manner within common classification network ?

We add a length normalization layer 
followed by a scale layer before the 
output layer of the common 
classification network. 

Ø In total, only a single scalar 
parameter 𝛼	is introduced, and it can 
be inherently trained with other 
components of the network together. 

Ø This scale parameter 𝛼 has a crucial 
impact on the performance since it 
determines the radius of the length-
normalized hyperspace.

Ø The network could have stronger 𝐿2-
constraint on the small radius 
hyperspace with smaller 𝛼, but faces 
the risk of not convergent.

𝒚9 = 𝛼	×	
𝑓(𝒙𝒊)
𝑓 𝒙𝒊 +

Table 2: Voxceleb1 open-set verification task performance, in comparing the effect of our introduced deep length normalization strategy
and traditional extra length normalization step (lower is better)

System Description Deep L2-norm Traditional L2-norm Similarity Metric minDCF10�2 minDCF10�3 EER(%)
i-vector + inner-product N/A 7 inner-product 0.736 0.800 13.80

i-vector + cosine N/A 3 inner-product 0.681 0.771 13.80
i-vector + PLDA N/A 7 PLDA 0.488 0.639 5.48

i-vector + L2-norm + PLDA N/A 3 PLDA 0.484 0.627 5.41
Deep embedding + inner-product 7 7 inner-product 0.758 0.888 7.42

Deep embedding+ cosine 7 3 inner-product 0.553 0.713 5.48
Deep embedding+ PLDA 7 7 PLDA 0.524 0.739 5.90

Deep embedding + L2-norm + PLDA 7 3 PLDA 0.545 0.733 5.21
L2-normalized deep embedding + inner-product 3 7 inner-product 0.475 0.586 5.01

L2-normalized deep embedding + PLDA 3 7 PLDA 0.525 0.694 4.74

Table 3: Verification performance on VoxCeleb1 for various
scale parameter ↵ (lower is better)

System Description minDCF10�2 minDCF10�3 EER(%)
Deep embedding baseline 0.553 0.713 5.48

fixed ↵ = 1 0.922 0.967 10.18
fixed ↵ = 4 0.601 0.828 6.36
fixed ↵ = 8 0.515 0.687 5.49

fixed ↵ = 12 0.475 0.586 5.01
fixed ↵ = 16 0.499 0.596 5.32
fixed ↵ = 20 0.503 0.637 5.46
fixed ↵ = 24 0.502 0.638 5.54
fixed ↵ = 28 0.497 0.640 5.52

trained ↵ = 26.1 0.486 0.599 5.60

resentation.
The model is trained with a mini-batch size of 128, us-

ing typical stochastic gradient descent with momentum 0.9 and
weight decay 1e-4. The learning rate is set to 0.1, 0.01, 0.001
and is switched when the training loss plateaus. For each train-
ing step, an integer L within [300,800] interval is randomly gen-
erated, and each data in the mini-batch is cropped or extended
to L frames. After model training finished, the 128-dimensional
speaker embeddings are extracted after the penultimate layer of
neural network.

4.4. Evaluation

We first investigate the setting of scale parameter ↵. For those
systems in Table 3 and Fig. 4, the cosine similarity or equiva-
lently L2-normalized inner-product is adopted to measure the
similarities between speaker embeddings. From Fig. 4, we can
observe the proposed L2-normalized deep embedding system
achieves the best minDCF of 0.475, 0.586 and EER of 5.01%,
which outperforms the baseline system significantly. According
to Equation (3), for spaker categories C of 1211 and probability
score p of 0.9, the theoretical lower bound of ↵ is 9. The perfor-
mance is poor when ↵ is below the lower bound and stable with
↵ higher than the lower bound. The best ↵ in our experiment is
12, which is slightly larger than the lower bound.

We further compare the effect of deep length normaliza-
tion strategy and traditional extra length normalization in the
whole SV pipeline. The results are shown in Table 2. No matter
in i-vector or baseline deep speaker embedding systems, extra
length normalization step followed by PLDA scoring achieves
the best performance. When it turns into L2-normalized deep
speaker embedding systems, since the speaker embeddings ex-
tracted from neural network have already been normalized to

(a) Performance in terms of minDCF10�2

(b) Performance in terms of minDCF10�3

Figure 4: Performance tendency curve considering various ↵

unit length, we need no more extra length normalization step.
In testing stage, a simple inner-product achieves the best per-
formance, even slightly better than the PLDA scoring result. It
might be the reason that our L2-normalized speaker embedding
is highly optimized, which could incompatible with the objec-
tive function introduced by PLDA.

5. Conclusions
In this paper, we explore a deep length normalization strategy
in end-to-end SV system. We add an L2-normalization layer
followed by a scale layer before the output layer of deep neural
network. This simple yet efficient strategy makes the learned
deep speaker embeddings being normalized in an end-to-end
manner. The value of scale parameter ↵ is crucial to the system
performance especially when the number of output categories is
large. Experiments show that system performance could be sig-
nificantly improved by setting proper value of ↵. In the testing
stage of an L2-normalized deep embedding system, a simple
inner-product can achieve the state-of-the-art.
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formance, even slightly better than the PLDA scoring result. It
might be the reason that our L2-normalized speaker embedding
is highly optimized, which could incompatible with the objec-
tive function introduced by PLDA.
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in end-to-end SV system. We add an L2-normalization layer
followed by a scale layer before the output layer of deep neural
network. This simple yet efficient strategy makes the learned
deep speaker embeddings being normalized in an end-to-end
manner. The value of scale parameter ↵ is crucial to the system
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Figure 3: Deep length normalization in end-to-end speaker verification system: before the final output layer, an L2-normalization layer
followed by a scale layer is added. Therefore, deep speaker embeddings can be inherently length-normalized in an end-to-end manner
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where M is the training batch size, C is the output categories,
yi is the deep normalized embedding, ci is the corresponding
ground truth label, and W and b are the weights and bias for
the last layer of the network which acts as a back-end classifier.

In total, only a single scalar parameter ↵ is introduced, and
it can be inherently trained with other components of the net-
work together. This scale parameter ↵ has crucial impact on
the performance since it determines the radius of the length-
normalized hyperspace. The network could have stronger L2-
constraint on the small radius hyperspace with smaller ↵, but
faces with the risk of not convergent.

Therefore, it is vital to choose appropriate ↵ and normalize
the feature into hyperspace with suitable radius. For elegance,
we may prefer to make the parameter ↵ automatically learned
by back-propagation. However, because the cross-entropy loss
function only takes into account whether it the speaker embed-
dings are separated correctly, it is apt to increases the value of
↵ to meet the demand. Therefore, the value of ↵ learned by
the network might always be high, which results in a relaxed
L2-constraint [23].

A better practice considers ↵ as a hype-parameter, and fix it
with a low-value constant in order to enlarge the L2-constraint.
However, too small ↵ for large number of categories may lead
to unconverged case. Hence, we should find a optimal balance
point for ↵.

Given the number of categories C for a training dataset,
in order to achieve a classification probability score of p, the
authors in [23] give the formulation of theoretical lower bound
on ↵ by

↵low = log
p(C � 2)
1� p

(3)

At the testing stage, speaker embeddings are extracted after
the L2-normalization layer. Since the embeddings have already
been normalized to unit length, a simple inner-product or PLDA
can be adopted to get the final similarity scores.

4. Experiments
4.1. Data description

Voxceleb1 is a large scale text-independent SR dataset collected
“in the wild”, which contains over 100,000 utterances from
1251 celebrities [25]. We focus on its open-set verification task.

Table 1: Baseline end-to-end system architecture

Layer Output size Downsample Channels Blocks
Conv1 64 ⇥ L False 16 -
Res1 64⇥ L False 16 3
Res2 32 ⇥ L

2 True 32 4
Res3 16 ⇥ L

4 True 64 6
Res4 8 ⇥ L

8 True 128 3
Average pool 128 - - -

FC (embedding) 128 - - -
Output speaker categories - - -

There are totally 1211 celebrities in the development
dataset. The testing dataset contains 4715 utterances from the
rest 40 celebrities. There are totally 37720 pairs of trials in-
cluding 18860 pairs of true trials. To evaluate the system per-
formance, we report results in terms of equal error-rate (EER)
and the minimum of the normalized detection cost function
(minDCF) at PTarget = 0.01 and PTarget = 0.001, as shown
in Table 2 and Table 3.

4.2. Referenced i-vector system

We build a referenced i-vector system based on the Kaldi
toolkit [26]. Firstly, 20 dimensional mel-frequency cepstral co-
efficients (MFCC) is augmented with their delta and double
delta coefficients, making 60 dimensional MFCC feature vec-
tors. Then, a frame-level energy-based voice activity detection
(VAD) selects features corresponding to speech frames. A 2048
components full covariance GMM UBM is trained, along with
a 400 dimensional i-vector extractor and full rank PLDA.

4.3. End-to-end system

Audio is converted to 64-dimensional log mel-filterbank en-
ergies with a frame-length of 25 ms, mean-normalized over
a sliding window of up to 3 seconds. A frame-level energy-
based voice activity detection (VAD) selects features corre-
sponding to speech frames. In order to get higher level ab-
stract representation, we design a deep convolutional neural
network (CNN) based on the well-known ResNet-34 architec-
ture [27], as described in Table 1. Followed by the front-end
deep CNN, we adopt the simplest average pooling layer to ex-
tract the utterance-level mean statistics. Therefore, given input
data sequence of shape 64⇥L, where L denotes variable-length
data frames, we finally get 128-dimensional utterance-level rep-

Network Setup
Ø The model is trained with a mini-batch size of 128, using typical stochastic 

gradient descent with momentum 0.9 and weight decay 1e-4. 
Ø The learning rate is set to 0.1, 0.01, 0.001 and is switched when the training loss 

plateaus. 
Ø For each training step, an integer L within [300,800] interval is randomly 

generated, and each data in the mini-batch is cropped or extended to L frames.
Ø After model training finished, the 128-dimensional speaker embeddings are 

extracted after the penultimate layer of neural network. 
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weight decay 1e-4. The learning rate is set to 0.1, 0.01, 0.001
and is switched when the training loss plateaus. For each train-
ing step, an integer L within [300,800] interval is randomly gen-
erated, and each data in the mini-batch is cropped or extended
to L frames. After model training finished, the 128-dimensional
speaker embeddings are extracted after the penultimate layer of
neural network.

4.4. Evaluation

We first investigate the setting of scale parameter ↵. For those
systems in Table 3 and Fig. 4, the cosine similarity or equiva-
lently L2-normalized inner-product is adopted to measure the
similarities between speaker embeddings. From Fig. 4, we can
observe the proposed L2-normalized deep embedding system
achieves the best minDCF of 0.475, 0.586 and EER of 5.01%,
which outperforms the baseline system significantly. According
to Equation (3), for spaker categories C of 1211 and probability
score p of 0.9, the theoretical lower bound of ↵ is 9. The perfor-
mance is poor when ↵ is below the lower bound and stable with
↵ higher than the lower bound. The best ↵ in our experiment is
12, which is slightly larger than the lower bound.

We further compare the effect of deep length normaliza-
tion strategy and traditional extra length normalization in the
whole SV pipeline. The results are shown in Table 2. No matter
in i-vector or baseline deep speaker embedding systems, extra
length normalization step followed by PLDA scoring achieves
the best performance. When it turns into L2-normalized deep
speaker embedding systems, since the speaker embeddings ex-
tracted from neural network have already been normalized to
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Figure 4: Performance tendency curve considering various ↵

unit length, we need no more extra length normalization step.
In testing stage, a simple inner-product achieves the best per-
formance, even slightly better than the PLDA scoring result. It
might be the reason that our L2-normalized speaker embedding
is highly optimized, which could incompatible with the objec-
tive function introduced by PLDA.

5. Conclusions
In this paper, we explore a deep length normalization strategy
in end-to-end SV system. We add an L2-normalization layer
followed by a scale layer before the output layer of deep neural
network. This simple yet efficient strategy makes the learned
deep speaker embeddings being normalized in an end-to-end
manner. The value of scale parameter ↵ is crucial to the system
performance especially when the number of output categories is
large. Experiments show that system performance could be sig-
nificantly improved by setting proper value of ↵. In the testing
stage of an L2-normalized deep embedding system, a simple
inner-product can achieve the state-of-the-art.

Experiments on different 𝜶
l We first investigate the setting of scale parameter α. For those systems in Table 

3 and Fig. 4, the cosine similarity or equivalently L2-normalized inner-product is 
adopted to measure the similarities between speaker embeddings. 

l From Fig. 4, we can observe the proposed L2-normalized deep embedding 
system achieves the best minDCF of 0.475, 0.586 and EER of 5.01%, which 
outperforms the baseline system significantly. 

l The performance is poor when α is too small and stable with α is higher. The 
best α in our experiment is 12.

We further compare the effect of deep length normalization 
strategy and traditional extra length normalization in the whole 
SV pipeline. The results are shown in Table 2. 

l No matter in i-vector or baseline deep speaker embedding 
systems, extra length normalization step followed by PLDA scoring 
achieves the best performance. 

l When it turns into L2-normalized deep speaker embedding 
systems, since the speaker embeddings extracted from neural 
network have already been normalized to unit length, we need no 
more extra length normalization step. 

l In testing stage, a simple inner-product achieves the best 
performance, even slightly better than the PLDA scoring result. It 
might be the reason that our L2-normalized speaker embedding is 
highly optimized, which could incompatible with the objective 
function introduced by PLDA. 

���/RJLVWLF�5HJUHVVLRQ
690

1HXUDO�1HWZRUN
&RVLQH�6LPLODULW\

3/'$
ŏŏ

$YHUDJH�4XDQWL]DWLRQ�'LVWRUWLRQ
*00�/LNHOLKRRG
*00�6XSHUYHFWRU
*00�L�YHFWRU
'11�L�YHFWRU
%DJ�RI�ZRUGV

1�JUDP�7RNHQ�6WDWLVWLFV
ŏŏ

94�FRGHERRN
*00

'11�3KRQHPH�'HFRGHU
'11�7RNHQL]HU

ŏŏ

0)&&�/3&&�3/3�6'&
�'11�%RWWOHQHFN�)HDWXUH
'11�333�)HDWXUH
'11�7DQGHP�)HDWXUH

ŏŏ

/RFDO�)HDWXUH�'HVFULSWRUV ��9HFWRU�(QFRGLQJ 'HFLVLRQ�*HQHUDWRU'LFWLRQDU\�/HDUQLQJ

Figure 1: Four main steps in the conventional processing pipeline
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Figure 2: Comparison of closed-set identification and open-set
verification problem. The closed-set identification is equivalent
to classification task, while the open-set verification can be con-
sidered as a metric learning task

ers to a discriminative feature space. In this scenario, open-
set speaker verification is essentially a metric learning problem,
where the key is to learn discriminative large-margin features.

Considering the aforementioned challenges, we generalize
the learning scheme for closed-set LR in [25], and build a uni-
fied end-to-end system for both LR and SR. The whole pipeline
contains five key modules: input data sequence, frame-level fea-
ture extractor, encoding layer, loss function, and similarity met-
ric. In this paper, We focus on investigating how to enhance the
system performance by exploring different kinds of encoding
layers and loss functions.

2. End-to-End System Overview

The speech signal is naturally with variable length, and we usu-
ally don’t know exactly how long the testing speech segment
will be. Therefore, a flexible processing method should have
the ability to accept speech segments with arbitrary duration.
Motivated by [21, 22, 25], the whole end-to-end framework in
this paper is shown in Fig. 3. It accepts variable-length input
and produces an utterance level result. The additional similarity
metric module is specifically designated for the open-set verifi-
cation task.

Given input data feature sequence such as log mel-
filterbank energies (Fbank), we employ a deep convolutional
neural network (CNN) as our frame-level feature extractor. It
can learn high-level abstract local patterns from the raw input

automatically. The frame-level representation after the front-
end convolutional layers is still in a temporal order. The re-
maining issue is to aggregate them together over the entire se-
quence. In this way, the encoding layer plays a role in extract-
ing a fixed-dimensional utterance level representation from a
variable-length input sequence. The utterance level representa-
tion is further processed through a fully-connected (FC) layer
and finally connected with an output layer. Each unit in the out-
put layer is represented as a target speaker/language label. All
the components in the pipeline are jointly learned in an end-to-
end manner with a unified loss function.

3. Encoding layer

3.1. Temporal average pooling layer

Recently, in both [21, 22], similar temporal average pooling
(TAP) layer is adopted in their neural network architectures. As
shown in Fig. 5, the TAP layer is inherently designated in the
end-to-end network, and it equally pools the front-end learned
features over time.

3.2. Self-attentive pooling layer

The TAP layer equally pools the CNN extracted features over
time. However, not all frame of features contribute equally to
the utterance level representation, We introduce a self-attentive
pooling (SAP) layer to pay attention to such frames that are
important to the classification and aggregate those informative
frames to form a utterance level representation.

In [26], attention-based recurrent neural network (RNN) is
introduced to get utterance level representation for closed-set
LR task . However, the work in [26] relies on a non-trivial pre-
training procedure to get the language category embedding, and
the authors only report results on 3s short duration task. Differ-
ent from [26] , the attention mechanism in our network archi-
tecture is self-contained, with no need for extra guiding source
information.

We implement the SAP layer similar to [27, 28, 29].
That is, we first feed the utterance level feature maps
{x1,x2, · · · ,xL} into a multi-layer perceptron (MLP) to get
{h1,h2, · · · ,hL} as a hidden representation. In this paer, we
simply adopt a one-layer perceptron,

ht = tanh(Wxt + b) (1)

Then we measure the importance of each frame as the similarity
of ht with a learnable context vector µ and get a normalized
importance weight wt through a softmax function.

wt =
exp(hT

t u)PT
t=1 exp(h

T
t u)

(2)


