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Introduction End-to-end LID

Framework
» Language identification (LID) is a kind of utterance-level Loss function
paralinguistic speech attribute recognition task with variable- Softmax probability 1\ bolasses X |
length speeches.
Fully connected layer
> It is important to find an effective and robust method to Fixed-size representation ‘[‘ CxK
retrieve the utterance-level information and encode them into Encoding Layer
fixed dimensional vector representations. Variable length
CNNs feature maps T CxL'
» Conventional encoding methods: CNNSs architecture
« Vector quantization (VQ) T
* Universal Background Model (UBM) Variable length S sTasal Dl
. i EEmEs = mm O E-mE X
- Pre-trained phoneme decoder (DNN) acoustic features e

* Average pooling

Fig. 2 Schematic diagram of end-to-end LRE framework

» End-to-end learnable encoding methods: > The CNN I t o -
. Learnable dictionary encoding (LDE) e s architecture acts as a feature extractor.

+ NetFV and NetVLAD (Our works) » The NetFV and NetVLAD are adopted in the en.co.ding layer.
Capture the zero-order and first-order statistics.

|. Superior to the temporal average pooling (TAP) layer

» All the parameters are learnable. Train the LID system under the
end-to-end principle.

Methods » Support variable-length utterances as input during both training

and testing phases.

» End-to-end learnable encoding DxC
layers .
a. Variable-length input Learnable Encoding Experimental

. L
sequence DXL - fixed- (o=

length representation DxC
b. All parameters are learnable

results

c. Proposed encoding methods e g ggteelgtiio;g(?sed-set anguage .. l e
for LID: NetFV and NetVLAD - | Totally 14 target languages. N NetVLAD 64
Fig. 1 Schematic diagram of encoding layer "raining set: 39000 utterances.

Test set: 7530 utterances. g l
> Implementation of the NetFV layer Three nominal durations: 3, Lo
a. Derived from the standard Fisher Vector (FV) algorithm 10 and 30 seconds.
b. Suppose a K-components GMM u; = Y 5_; apug(x;) is used " eSS
in FV, the FV w.r.t. the mean and the standard deviation R U 206;:’“'2;,);‘:‘
parameters: - lTraining stefp L
1 X; — Uy Fig. 3 The training loss curves of end-to-end systems
Vi loguy (x;) = \/?k)’i(k)( p )

1 (x—p)? — 1 » EXxperimental setup
Vay logu, (x;) = Wyi(k)[ : p; ] a. ResNet-34 (3-4-6-3 stacked blocks, 128 output channels)
k k . .
. . . b. K-clusters (K ranges from 16 to 128) in encoding layer
: _ th
where the y;(k) is the posterior probability of x; on the k c. SGD optimizer with (momentum 0.9 and weight decay 10~%)
d

GMM component. . . .
c. To make the FV definition equations differentiable, ' 28 ZESC;OS In training. Change the learning rate at the epoch

simplifications are introduced to the original FV:
l.  Assume all GMM components have equal weights.
Il. Simplify the Gaussian density u; (x;) to

. Train and test with the same model on the 3s, 10s and 30s
utterances.

)
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e (%) = TG exp{—- (¥i = )" Zic" (xi = pi)}

d. Letw, =1/04 and b, = —pu,,, and assume that Z; =

diag(o%). The final differential definition equations of the
NetFV layer:

» Both the NetFV and NetVLAD based LID systems outperform the
GMM i-vector or the TAP based systems.

» The TAP based baseline system achieves the accuracies of

Vg loguy (x;) = yi(k)[wy © (x; + by)]

Vo, logu (x;) = =y () [(W,e O (x; + by))? — 1]
exp{—3 Wi O (xi+b)]T WO (xi+by)]}

i (k)=25=1 eXp{_%[Wc@(xi+bc)]T[Wc@(xi+bc)]}

e. The parameters set of the NetFV layer is 1 = {wy, by }.

» Implementation of the NetVLAD layer
a. VLAD is another strategy used to aggregate a set of feature
descriptors into a fixed-size representation.

b. The conventional definition of the VLAD is

V) = ) Bl (xi - )

where V € R¥*P | B, (x;) is the “hard” alignment of x; to
the cluster u,.

c. Change the hard alignment into the soft alignment, i.e.
exp(wkx?+bk)

Br(x;) = s K

c=1 exp(wcx?+bc)
d. The final differential definition equation of the NetFV layer is
L
V(k) = —
=1 c=1

l

e. The paramete_rs set of the NetVLAD layer is A = {u, wy, by }.

exp(ka’lr + bk)

exp(W.x! + b,) (% = )

75.49%, 89.71% and 93.56% on the 3s, 10s and 30s test set
respectively, while the NetVLAD based system improves the
accuracies to 76.14%, 91.43% and 96.85%.

» Overall, NetVLAD is slightly superior to NetFV in the test phase
and achieves the best performance when the cluster size is 64.

» The fusion system improves the C,,, and the EER metrics further.

Table 1: Performances on 2007 NIST LRE task

. Cavg(%)/EER(%)

System description 3 T0s 305

GMM i-vector 20.46/17.71 | 8.29/7.00 | 3.02/2.27
ResNet34 TAP 9.24/10.91 | 3.39/5.58 | 1.83/3.64
ResNet34 LDE 64 8.25/7.75 |2.61/2.31 | 1.13/0.96
ResNet34 NetFV 16 9.47/9.04 |2.96/2.59 | 1.31/1.08
ResNet34 NetFV 32 8.95/8.37 |2.88/2.49|1.35/1.31
ResNet34 NetFV 64 8.91/8.26 |2.88/2.74|1.19/1.15

ResNet34 NetFV 128 9.05/8.64 |291/2.72 | 1.27/1.34
ResNet34 NetVLAD 16  8.23/8.06 |2.90/2.62|1.36/1.17
ResNet34 NetVLAD 32 8.87/8.58 |3.10/2.50 | 1.46/1.15
ResNet34 NetVLAD 64  8.59/8.08 |2.80/2.50 | 1.32/1.02
ResNet34 NetVLAD 128 8.72/8.44 | 3.15/2.76 | 1.53/1.14
Fusion system 6.14/6.86 |1.81/2.00 | 0.89/0.92




