

End-to-end Language Identification using NetFV and NetVLAD Jinkun Chen², Weicheng Cai^{1,2}, Danwei Cai¹, Zexin Cai¹, Haibin Zhong³, Ming Li¹ ¹Data Science Research Center, Duke Kunshan University, Kunshan, China

²School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

³Jiangsu Jinling Science and Technology Group Limited, Nanjing, China

ming.li369@dukekunshan.edu.cn

SUN VIEW UNIT

Introduction

- Language identification (LID) is a kind of utterance-level paralinguistic speech attribute recognition task with variablelength speeches.
- It is important to find an effective and robust method to retrieve the utterance-level information and encode them into fixed dimensional vector representations.
- Conventional encoding methods:
 - Vector quantization (VQ)

- Universal Background Model (UBM)
- Pre-trained phoneme decoder (DNN)
- Average pooling

 \bullet

- > End-to-end learnable encoding methods:
 - Learnable dictionary encoding (LDE)
 - NetFV and NetVLAD (Our works)

Methods

- End-to-end learnable encoding layers
 - a. Variable-length input sequence $D \times L \rightarrow$ fixedlength representation $D \times C$
 - b. All parameters are learnable
 - c. Proposed encoding methods for LID: NetFV and NetVLAD

Fig. 1 Schematic diagram of encoding layer

The LRE07 closed-set language detection task:

Totally 14 target languages. Training set: 39000 utterances.

- Implementation of the NetFV layer
 - a. Derived from the standard Fisher Vector (FV) algorithm
 - b. Suppose a *K*-components GMM $u_{\lambda} = \sum_{k=1}^{K} \alpha_k u_k(x_i)$ is used in FV, the FV w.r.t. the mean and the standard deviation parameters:

$$\nabla \boldsymbol{\mu}_k \log u_\lambda(\boldsymbol{x}_i) = \frac{1}{\sqrt{\alpha_k}} \gamma_i(k) \left(\frac{\boldsymbol{x}_i - \boldsymbol{\mu}_k}{\boldsymbol{\sigma}_k}\right)$$
$$\nabla \boldsymbol{\sigma}_k \log u_\lambda(\boldsymbol{x}_i) = \frac{1}{\sqrt{2\alpha_k}} \gamma_i(k) \left[\frac{(\boldsymbol{x}_i - \boldsymbol{\mu}_k)^2 - 1}{\boldsymbol{\sigma}_k^2}\right]$$

where the $\gamma_i(k)$ is the posterior probability of x_i on the k^{th} GMM component.

- c. To make the FV definition equations differentiable, simplifications are introduced to the original FV:
 - I. Assume all GMM components have equal weights.
 - II. Simplify the Gaussian density $u_k(x_i)$ to

$$u_k(\boldsymbol{x}_i) = \frac{1}{\sqrt{(2\pi)^D}} \exp\{-\frac{1}{2}(\boldsymbol{x}_i - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

d. Let $w_k = 1/\sigma_k$ and $b_k = -\mu_k$, and assume that $\Sigma_k = diag(\sigma_k^2)$. The final differential definition equations of the NetFV layer:

 $\nabla \boldsymbol{\mu}_{k} \log u_{\lambda}(\boldsymbol{x}_{i}) = \gamma_{i}(k) [\boldsymbol{w}_{k} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{k})]$ $\nabla \boldsymbol{\sigma}_{k} \log u_{\lambda}(\boldsymbol{x}_{i}) = \frac{1}{\sqrt{2}} \gamma_{i}(k) [(\boldsymbol{w}_{k} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{k}))^{2} - 1]$ $\gamma_{i}(k) = \frac{\exp\{-\frac{1}{2}[\boldsymbol{w}_{k} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{k})]^{T}[\boldsymbol{w}_{k} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{k})]\}}{\sum_{c=1}^{K} \exp\{-\frac{1}{2}[\boldsymbol{w}_{c} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{c})]^{T}[\boldsymbol{w}_{c} \odot (\boldsymbol{x}_{i} + \boldsymbol{b}_{c})]\}}$ Test set: 7530 utterances. Three nominal durations: 3, 10 and 30 seconds.

Fig. 3 The training loss curves of end-to-end systems

Average Pooling

NetFV 16

NetVLAD 64

Experimental setup

a. ResNet-34 (3-4-6-3 stacked blocks, 128 output channels)

2.5 -

2.0 -

- b. K-clusters (K ranges from 16 to 128) in encoding layer
- c. SGD optimizer with (momentum 0.9 and weight decay 10^{-4})
- d. 90 epochs in training. Change the learning rate at the epoch 60 and 80.
- e. Train and test with the same model on the 3s, 10s and 30s utterances.
- Both the NetFV and NetVLAD based LID systems outperform the GMM i-vector or the TAP based systems.
- The TAP based baseline system achieves the accuracies of 75.49%, 89.71% and 93.56% on the 3s, 10s and 30s test set respectively, while the NetVLAD based system improves the accuracies to 76.14%, 91.43% and 96.85%.
- e. The parameters set of the NetFV layer is $\lambda = \{w_k, b_k\}$.
- Implementation of the NetVLAD layer
 - a. VLAD is another strategy used to aggregate a set of feature descriptors into a fixed-size representation.
 - b. The conventional definition of the VLAD is

$$\boldsymbol{V}(k) = \sum_{i=1}^{L} \beta_k(\boldsymbol{x}_i) \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$

where $V \in R^{K \times D}$, $\beta_k(x_i)$ is the "hard" alignment of x_i to the cluster μ_k .

c. Change the hard alignment into the soft alignment, i.e.

$$\beta_k(\boldsymbol{x}_i) = \frac{\exp(\boldsymbol{w}_k \boldsymbol{x}_i^T + \boldsymbol{b}_k)}{\sum_{c=1}^{K} \exp(\boldsymbol{w}_c \boldsymbol{x}_i^T + \boldsymbol{b}_c)}$$

d. The final differential definition equation of the NetFV layer is

$$V(k) = \sum_{i=1}^{L} \frac{\exp(\boldsymbol{w}_{k}\boldsymbol{x}_{i}^{T} + b_{k})}{\sum_{c=1}^{K} \exp(\boldsymbol{w}_{c}\boldsymbol{x}_{i}^{T} + b_{c})} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})$$

e. The parameters set of the NetVLAD layer is $\lambda = \{\mu_k, w_k, b_k\}$.

- Overall, NetVLAD is slightly superior to NetFV in the test phase and achieves the best performance when the cluster size is 64.
- > The fusion system improves the C_{avg} and the EER metrics further.

System description	$C_{avg}(\%)/EER(\%)$		
	3s	10s	30s
GMM i-vector	20.46/17.71	8.29/7.00	3.02/2.27
ResNet34 TAP	9.24/10.91	3.39/5.58	1.83/3.64
ResNet34 LDE 64	8.25/7.75	2.61/2.31	1.13/0.96
ResNet34 NetFV 16	9.47/9.04	2.96/2.59	1.31/1.08
ResNet34 NetFV 32	8.95/8.37	2.88/2.49	1.35/1.31
ResNet34 NetFV 64	8.91/8.26	2.88/2.74	1.19/1.15
ResNet34 NetFV 128	9.05/8.64	2.91/2.72	1.27/1.34
ResNet34 NetVLAD 16	8.23/8.06	2.90/2.62	1.36/1.17
ResNet34 NetVLAD 32	8.87/8.58	3.10/2.50	1.46/1.15
ResNet34 NetVLAD 64	8.59/8.08	2.80/2.50	1.32/1.02
ResNet34 NetVLAD 128	8.72/8.44	3.15/2.76	1.53/1.14
Fusion system	6.14/6.86	1.81/2.00	0.89/0.92